New Design Rules and Tables for Development and Lap Splice Lengths to AS 3600–2009

EXCEPTION

TELEFORTEL TELEF

Scott Munter – Steel Reinforcement Institute of Australia Mark Patrick – MP Engineers

Overview

- Design to AS 3600–2001: Tensile Development or Lap Length
- SRIA Industry Survey of Engineering Drawings
- Design to AS 3600–2009: Tensile Development Lengths (Basic or Refined)
- Design to AS 3600–2009: Tensile Lap Lengths (Basic or Refined)
- SRIA Design Tables to AS 3600–2009

Design to AS 3600–2001: Tensile Development or Lap Length

$$L_{\text{sy.t}} = \frac{k_1 k_2 f_{\text{sy}} A_{\text{b}}}{\left(2a + d_{\text{b}}\right) \sqrt{f_{\text{c}}'}} \ge 25 k_1 d_{\text{b}}$$

 $2a = \min(2 \times \min + cover)$, clear distance s_c)

- First included in AS 3600 1988
- Applicable for min. nominal 400 MPa deformed bars
- Formula can be used to calculate tensile development length or lap length (s_c modified)
- k₁ accounts for depth of concrete below bars
- k_2 accounts for wide bar spacing & any transverse bars
- $f_{\rm c}' \leq 65 \text{ MPa}$

Design to AS 3600–2001: Tensile Development or Lap Length Recommended improvements:

 Increase minimum value of L_{sy.t} for D500N reinforcing bars:

$$L_{\rm sy.t} = \frac{k_1 k_2 f_{\rm sy} A_{\rm b}}{(2a + d_{\rm b}) \sqrt{f_{\rm c}'}} \ge 29 k_1 d_{\rm b}$$

 Place limits on 2a: 2d_b ≤ 2a ≤ 6d_b in particular the lower limit, so as to avoid excessively large L_{sy.t} values

Design to AS 3600–2001: *Tensile Development or Lap Length* Definition of clear distance, s_c, between bars developing stress:

Figures unfortunately absent from Standard or Commentary:

Design to AS 3600–2001: Tensile Development or Lap Length

excellence in concrete

RECOMMENDED PRACTICE

Reinforcement Detailing Handbook For Reinforced and Prestressed Concrete

CONCRETE INSTITUTE

of AUSTRALIA

CONCRETE INSTITUTE

Design to AS 3600_2004

	(2)	Bar size	9				108	N32	Na	36	
f'c (MPa)	a ⁽²⁾ . (mm)	N12	N16	N20	N2	24	N20			-	
(MPa) 40	(mm) 20 25 30 35 40 45 50 55 60 65	380 320 300 300 300 300 300 300 300 300 30	620 530 460 410 400 400 400 400 400 400 400 400 40	91(78 68 61 0 55 0 5 0 5 0 5 0 5 0 5 0 5	0 10 0 10 0 9 00 50 500 500 500	-)60)40 840 760 690 630 600 600 600 600 600	 *7_ 1220 1090 990 91 91<) 1370) 125 0 115 0 106 30 99 20 9 00 8	- 0 0 1 50 1 50 1 90 20 860 810	- 530 1410 1300 1210 1130 1070 1010	
	70) 30 5 30	0 4 00 4	00	500	6(00	700	800	950	7
										CO	NCREIE

SRIA Industry Survey of Engineering Drawings

Typical Structural Drawing

LAD LENGTHS-WALLS								
LAPL	TOP BARS	BOTTOM BARS						
REINFORCEMENT	101 01	300						
N12	500	400						
N16	500	550						
N20	900	750						
N24		950						
N28	1200	1200						
N32	1500	1450						
N36	1800							
	W N 01 00 00 00 00 00 00 00 00	CON						

RETE

SRIA Industry Survey of Engineering Drawings

- Sample of tensile development or lap lengths, L_{sy.t}, to AS 3600–2001, assuming:
 - clear distance, $a \ge 2 \times \text{cover } \&$ at least 150 mm for slabs;
 - cover equals minimum required for durability;
 - cover not less than bar diameter, d_b, rounded up to nearest multiple of 5 mm; and
 - not more than 300 mm of concrete below bars.

Exposure classification	Element type	Bar diameter, <i>d_b</i> (mm)			
(EC) & strength grade f'_c	степлени туре	12	16	28	
A1 & <i>f'_c</i> = 25 MPa	Slab	30.8 <i>d</i> _b	38.1 <i>d</i> _b	42.5 <i>d</i> _b	
	Beam/Column	39.9 <i>d</i> _b	49.4 <i>d</i> _b	55.0 <i>d</i> _b	
$\wedge 1 \ 8 \ f' > 22 \ MDa$	Slab	29.0 <i>d</i> _b	33.7 <i>d</i> _b	37.6 <i>d</i> _b	
AT $\alpha T_c \ge 52$ IMPA	Beam/Column	35.2 <i>d</i> _b	43.6 <i>d</i> _b	48.6 <i>d</i> _b	
$B1 \& f' > 32 MP_2$	Slab	29.0 <i>d</i> _b	29.0 <i>d</i> _b	30.6 <i>d</i> _b	
$DT Q T_c \ge 32 WFa$	Beam/Column	29.0 <i>d</i> _b	29.0 <i>d</i> _b	39.6 <i>d</i> _b	

Exposure classification (EC) & strength grade <i>f</i> ' _c	Element type	Bar diameter, <i>d_b</i> (mm) 12
A1 & <i>f</i> ′ _c = 25 MPa	Slab	30.8 <i>d</i> _b
	Beam/Column	39.9 <i>d</i> _b
$\wedge 1.8 f' > 22 MP_2$	Slab	29.0 <i>d</i> _b
$A \alpha _c = 32 w ra$	Beam/Column	35.2 <i>d</i> _b
$P1 \ \ell f' > 22 MP_2$	Slab	29.0 <i>d</i> _b
$BT \propto T_c \ge 32$ WIFA	Beam/Column	29.0 <i>d</i> _b

Exposure classification (EC) & strength grade <i>f</i> ' _c	Element type	Bar diameter, <i>d_b</i> (mm) 16
$\wedge 1 \ $ $f' = 25 \ MD_{2}$	Slab	38.1 <i>d</i> _b
$A T \alpha T_c = 25 WF a$	Beam/Column	49.4 <i>d</i> _b
$\wedge 1.8 f' > 22 MDc$	Slab	33.7 <i>d</i> _b
$A T \alpha T_c \ge 32 WF a$	Beam/Column	43.6 <i>d</i> _b
$P1 \ \ell f' > 22 MD_2$	Slab	29.0 <i>d</i> _b
$BI \propto T_c \ge 32$ WFa	Beam/Column	29.0 <i>d</i> _b

Exposure classification (EC) & strength grade <i>f</i> ' _c	Element type	Bar diameter, <i>d_b</i> (mm) 28
$A1.8.f' = 25 MP_{2}$	Slab	42.5 <i>d</i> _b
AT $\alpha T_c = 25$ WF a	Beam/Column	55.0 <i>d</i> _b
$\wedge 1 \circ f > 22 MD_{2}$	Slab	37.6 <i>d</i> _b
AT & $T_c \ge 32$ MPa	Beam/Column	48.6 <i>d</i> _b
$P1 \ \ell f' > 22 MP_2$	Slab	30.6 <i>d</i> _b
$DI \propto I_c \ge 32$ IVIPA	Beam/Column	39.6 <i>d</i> _b

Design to AS 3600–2009: *Tensile Development Lengths*

Basic Tensile Development Length:

Design to AS 3600–2009: *Tensile Development Lengths*

AS 3600–2001 vs AS 3600–2009: EC=A1 (f'_c=20,25 MPa)

Design to AS 3600–2009: *Tensile Development Lengths*

AS 3600–2001 vs AS 3600–2009: EC=B1 (f'_c≥25 MPa)

Design to AS 3600–2009: Tensile Development Lengths

Maximum reduction to be gained from Refined Design:

$$k_{3} = 1.0 - 0.15(c_{d} - d_{b}) / d_{b}$$

$$k_{4} = 1.0 - K(\sum A_{tr} - \sum A_{tr.min}) / A_{s}$$

$$k_{5} = 1.0 - 0.04\rho_{p}$$

$$\left. \begin{array}{l} 0.7 \le k_3, k_4, k_5 \le 1.0 \\ k_3 k_4 k_5 \ge 0.7 \end{array} \right\} \Rightarrow k_4 k_5 \ge 0.7/k_3 \quad \text{OR} \quad (k_4 k_5)_{\min} = 0.7/k_3 \\ \end{array}$$

Design to AS 3600–2009: *Tensile Development Lengths*

Maximum reduction to be gained from Refined Design:

$$k_4 = 1.0 - K(\sum A_{tr} - \sum A_{tr.min}) / A_s$$

Design to AS 3600–2009: *Tensile Development Lengths*

Maximum reduction to be gained from Refined Design:

	N10	N12	N16	N20	N24	N28	N32	N36	N40
C d			Values of $(k_4 k_5)_{min} = 0.7/k_3$						
20	0.82	0.78	0.73	0.70	0.70	0.70	0.70	0.70	0.70
25	0.90	0.84	0.76	0.73	0.70	0.70	0.70	0.70	0.70
30	1.00	0.90	0.81	0.76	0.73	0.71	0.70	0.70	0.70
35	1.00	0.98	0.85	0.79	0.75	0.73	0.71	0.70	0.70
40	1.00	1.00	0.90	0.82	0.78	0.75	0.73	0.71	0.70
45	1.00	1.00	0.96	0.86	0.81	0.77	0.75	0.73	0.71
50	1.00	1.00	1.00	0.90	0.84	0.79	0.76	0.74	0.73
55	1.00	1.00	1.00	0.95	0.87	0.82	0.78	0.76	0.74
60	1.00	1.00	1.00	1.00	0.90	0.84	0.81	0.78	0.76
65	1.00	1.00	1.00	1.00	0.94	0.87	0.83	0.80	0.77
70	1.00	1.00	1.00	1.00	0.98	0.90	0.85	0.82	0.79
75	1.00	1.00	1.00	1.00	1.00	0.94	0.88	0.84	0.81
80	1.00	1.00	1.00	1.00	1.00	0.97	0.90	0.86	0.82
85	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.88	0.84
90	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.90	0.86
95	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.93	0.88
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.90

Design to AS 3600–2009: *Tensile Development Lengths*

AS 3600–2001 vs AS 3600–2009: EC=B1 (f'_c≥25 MPa)

Design to AS 3600–2009: *Tensile Development Lengths*

Recommended amendment for transverse steel:

$$k_4 = 1.0 - K(\sum A_{tr} - \sum A_{tr.min}) / A_s$$

Weighted – average: $K = 0.05(1 + n_f / n_{bs}) \le 0.1$

 $n_{\rm f}$ = no. of fitment bars that potential splitting crack crosses

 $n_{\rm bs}$ = no. of longitudinal bars being anchored or spliced

BY THIS APPROACH, ALL BARS AT AN ANCHORAGE LOCATION HAVE THE SAME DEVELOPMENT LENGTH

Design to AS 3600–2009: *Tensile Development Lengths*

Recommended amendment for transverse steel:

IABLE 13.1.2.3 VALUES OF K FOR TYPICAL ARRANGEMENTS OF TRANSVERSE REINFORCEMENT FOR DIFFERENT MEMBER TYPES							
Member type	Examples of potential splitting cracks at a tensile face	n _f	n _{bs}	K (see Note 2)			
Circular column	$A_{tt} = A_{b.fit}$	1	1	0.10			
Rectangular column	$n_{\rm f} = 2, n_{\rm bs} = 2$ $\Rightarrow K = 0.10$ $A_{\rm tr} = A_{\rm b.fit}$ $n_{\rm f} = 2, n_{\rm bs} = 3$ $\Rightarrow K = 0.083$	≥1	≥1	0.05 <i>≤K≤</i> 0.10			
Beam	$n_{\rm f} = 2, n_{\rm bs} = 4$ $\Rightarrow K = 0.075$	≥1	≥1	0.05 <i>≤K≤</i> 0.10			
Slab or wall (with fitments)	$A_{tr} = A_{b.fit}$ $n_f = n_{bs}$ $\Rightarrow K=0.10$	≥1	≥1	0.05 <i>≤K</i> ≤0.10			
Slab or wall (without fitments)		0	1 per main bar spacing	0.05 (see Note 3)			

NOTES:

- 1 Fitments are a type of transverse reinforcement.
- 2 The same value of *K* applies to all of the longitudinal bars being either anchored or lap spliced, i.e. it is a weighted average value.
- 3 To be effective, the transverse reinforcement must be located between the longitudinal bars and the concrete tensile face as shown, otherwise K=0.

Design to AS 3600–2009: *Tensile Development Lengths*

 Recommended amendment for transverse steel: ACI 408 database and max. *K*=0.1

Design to AS 3600–2009: *Tensile Development Lengths*

 Recommended amendment for transverse steel: ACI 408 database and max. K=0.1

Design to AS 3600–2009: *Tensile Development Lengt*hs

 Recommended amendment for transverse steel: ACI 408 database but with max. K=0.3 (too high!)

Design to AS 3600–2009: Tensile Lap Lengths

Basic Tensile Lap Length:

Design to AS 3600–2009: Tensile Lap Lengths

AS 3600–2001 vs AS 3600–2009: EC=A1 (f'_c=20,25 MPa)

Design to AS 3600–2009: Tensile Lap Lengths

AS 3600–2001 vs AS 3600–2009: EC=B1 (f'_c≥25 MPa)

SRIA Design Tables to AS 3600–2009

- General Tables
 - c_d is calculated directly by the designer
 - similar to existing tables
- New Bar-Cover-Controlled Tables
 - c_d is controlled by concrete cover to bars
- New Bar-Spacing-Controlled Tables
 - c_{d} is controlled by clear distance between bars
- Commentary and Worked Examples

SRIA Design Tables to AS 3600–2009

Design Variables for Bar-Cover-Controlled Tables

Design Variable	Description	Range		
EC	Exposure classification for durability	EC = A1, A2 or B1, with concrete assumed to be cast in standard formwork		
<i>k</i> 1	Constant that accounts for depth of concrete below bars	 k₁ = 1.3 for horizontal anchored or lapped bars with more than 300 mm concrete below; or = 1.0 otherwise 		
k7	Constant that accounts for effects of staggered laps and bar stress levels	k_7 = 1.0 if the cross-sectional area of the bars outside the laps equals at least twice the area required for strength, and no more than half the bars are lapped at any section; or = 1.25 otherwise.		

SRIA Design Tables to AS 3600–2009

SRIA Design Tables to AS 3600–2009

Required concrete cover, c_{rea}

 TABLE
 4.10.3.2

REQUIRED COVER WHERE STANDARD FORMWORK AND COMPACTION ARE USED

	Required cover, mm						
Exposure classification	Characteristic strength $(f_{\rm c}')$						
	20 MPa	25 MPa	32 MPa	40 MPa	≥ 50 MPa		
A1	20	20	20	20	20		
A2	(50)	30	25	20	20		
B1	_	(60)	40	30	25		
B2	_		(65)	45	35		
C1		—	_	(70)	50		
C2					65		

NOTE: Bracketed figures are the appropriate covers when the concession given in Clause 4.3.2, relating to the strength grade permitted for a particular exposure classification, is applied.

SRIA Design Tables to AS 3600–2009

Extracts from Bar-Cover-Controlled Tables

Exposure classification (EC), strength	Development or lap	Bar diameter, <i>d</i> _b (mm)			
f'_c and c_{req}	length	12	16	28	
A1	L _{sy.tb}	41.9 <i>d</i> _b	46.4 <i>d</i> _b	53.2 <i>d</i> _b	
<i>f'_c</i> = 20 MPa & <i>c_{req}</i> = 20 mm	L _{sy.tb.lap}	52.4 <i>d</i> _b	58.0 <i>d</i> _b	66.5 <i>d</i> _b	
	$(k_4k_5)_{\min}$	0.78	0.73	0.71	
A1	L _{sy.tb}	37.5 <i>d</i> _b	41.5 <i>d</i> _b	47.6 <i>d</i> _b	
<i>f'_c</i> = 25 MPa & <i>c_{req}</i> = 20 mm	L _{sy.tb.lap}	46.9 <i>d</i> _b	51.9 <i>d</i> _b	59.5 <i>d</i> _b	
	$(k_4k_5)_{min}$	0.78	0.73	0.71	
B1	L _{sy.tb}	$29.0d_b(29.2d_b)$	$29.5d_b(30.2d_b)$	$39.8d_b(39.8d_b)$	
<i>f</i> ′ _c = 32 MPa & c _{req} = 40 mm	L _{sy.tb.lap}	$32.2d_b(36.5d_b)$	$36.9d_b(37.7d_b)$	$49.7d_b(49.8d_b)$	
(<i>f'_c</i> = 25 MPa & <i>c_{req}</i> = 60 mm)	$(k_4k_5)_{\min}$	1.0 (1.0)	0.90 (1.0)	0.75 (0.85)	

SRIA Design Tables to AS 3600–2009

Example Design Table for Structural Dwgs

(Worked example in paper:

building foundation EC=B1 and f'_c =32 MPa)

		N12 main bars	N16 main bars	N28 main bars
Slabs:	$L_{sy,t}$ (mm)	350	470	1120
	L _{sy.t.lap} (mm)	390	590	1390
Bored	$L_{sy.t}$ (mm)	-	-	840
Piles:	L _{sy.t.lap} (mm)	-	-	1050

Notes: (a) Exposure Classification B1 (exterior), f'_c = 32 MPa;

(b) min. concrete cover to main bars, $c_{min} = 40$ mm;

- (c) min. centre-to-centre spacing of main bars = $2c_{min} + 2d_b$ assuming no staggering;
- (d) N16 with max. 125 mm pitch or equivalent spiral in bored piles; and
- (e) multiply slab values by 1.3 for top bars with 300⁺ mm of concrete below.

Conclusions

- Design to AS 3600–2001: Tensile Development or Lap Length
- SRIA Industry Survey of Engineering Drawings
- Design to AS 3600–2009: Tensile Development Lengths (Basic or Refined)
- Design to AS 3600–2009: Tensile Lap Lengths (Basic or Refined)
- SRIA Design Tables to AS 3600–2009

New Design Rules and Tables for Development and Lap Splice Lengths to AS 3600–2009

EXCEPTION

TELEFORTEL TELEF

Scott Munter – Steel Reinforcement Institute of Australia Mark Patrick – MP Engineers

